科目:統計製程品管

考試日期: 113年8月24日 第 1 頁: 共 9 頁

單選題 30 題 (佔 60%)

答案		題目 + 選項
A	1.	一組數據中,其最大值與最小值的差,稱為?
		(A)全距
		(B) 平均差 (mean deviation)
		(C)標準差
		(D) 中位數
C	2.	當某品質特性採`X-R 管制圖 · 已知 n=6(A2=0.483 · D4=2.004 · D3=0) · X=16.5 ·
		`R=3.5 · 其中 R 管制圖之 UCL 為 ?
		(A) 18
		(B) 14
		(C)7
		(D) 10
C	3.	下列何者成立時·A與B兩事件為獨立?
		(A)P(A)+P(B)=1
		$(B) P (A) \times P (B) = 0$
		$(C)P(A \cap B) = P(A) \times P(B)$
		(D)P(AUB) = P(A) + P(B)
A	4.	品管新七手法中,常用下列何種方法來「化繁為簡」?
		(A)親和圖法
		(B) 層別法
		(C) 箭線圖法
		(D) PDPC 法
A	5.	以平均值加減三個標準差為管制界限,製程雖屬正常,但超出管制上限以外的點
		仍有約:
		(A) 0.135%
		(B) 0.2%
		(C) 0.35%
		(D) 0.27%

科目:統計製程品管

考試日期: 113年8月24日

第 2 頁,共 9 頁

答案		題目 + 選項		
В	6.	有關不合格率 P 管制圖之敘述,下列何者正確?		
		(A)不合格率管制圖每組樣品大小要比平均值 - 全距管制圖小得多		
		(B)不合格率管制圖是根據數學二項分配理論而來		
		(C)不合格率管制圖取樣量應視每日製程良率而調整		
		(D) 不合格率管制圖之樣本大小完全不得調整		
С	7.	關於特性要因圖的敘述,下列何者錯誤?		
		(A)特性要因圖又稱為「石川圖」·且因為圖形像魚骨·故又稱為「魚骨圖」		
		(B) 特性要因圖最早發展用來識別問題的根本原因,透過將潛在原因分類為幾		
		個主要類別來進行分析		
		(C)特性要因圖的箭頭方向若向左通常用於尋找對策·向右則用來解決問題		
		(D)特性要因圖不適合用於生產過程中品質控管的實時監控		
D	8.	有一常態分配之品質特性的 X -R 管制圖,每組樣本大小為 5 , d_2 =2.32 6 : X 管制		
		B R 管制圖		
		管制上限= 102.567 管制上限= 5.786		
		中 心 線= 100.034 中 心 線= 2.863		
		管制下限= 97.501 管制下限= 0		
		上列之管制圖均在管制狀態下,估計此一製程標準差為:		
		(A) 1.679		
		(B) 1.189		
		(C) 1.786		
		(D) 1.231		
В	9. 有關計量值管制圖與計數值管制圖的敘述,下列何者正確?			
		(A)計數值管制圖比計量值管制圖能提供更多有用之製程資訊		
		(B) 計量值管制圖可以將某一產品之數個品質特性同時繪置於同一張管制圖上		
		以增加樣本數		
		(C)計量值管制圖比計數值管制圖需要更多的樣本才可偵測出製程偏移		
		(D)計量值管制圖中檢測每單位的成本與時間通常較計數值管制圖高		

科目:統計製程品管

考試日期: 113年8月24日

第 3 頁,共 9 頁

答案	題目 + 選項				
A	10. 管制圖由何人於研究產品品質特性的次數分配時所發明?				
	(A) 蕭華特(W. A. Shewhart)				
	(B) 戴明 (D. E. Deming)				
	(C)裘蘭 (J. M. Juran)				
	(D)費根堡 (A. V. Feigenbaum)				
A	11. 品質受製程上很多原因影響,為瞭解其因果關係而繪製的圖,稱為:				
	(A)特性要因圖				
	(B) 層別法				
	(C) 直方圖				
	(D)管制圖				
В	12. 用以描述問題因果關係,將原因 1 結果、目的 1 手段等糾結在一起,使問題明確				
	化的技巧為?				
	(A)親和圖				
	(B)關連圖				
	(C)矩陣圖				
	(D) 箭線圖				
D	13. 不良率管制圖管制界限之計算,係根據?				
	(A) 卜氏分配				
	(B) 超幾何分配				
	(C)常態分配				
	(D) 二項分配				
В	14. 某飲料工廠,其飲料填裝規格為 300±3 毫升,若實際從產品中抽出 10 個樣本之				
	資料如下,估算其製程能力指標 C_{pk} 的級數為:				
	様本 1 2 3 4 5 6 7 8 9 10				
	毫升 300.5 301.6 301.6 300.2 300.0 298.9 299.0 300.0 301.2 301.0				
	(A)B級				
	(B)C級				
	(C)D級				
	(D)E級				

科目:統計製程品管

考試日期: 113 年 8 月 24 日 第 4 頁 + 共 9 頁

答案	題目 + 選項					
В	15. 驗收抽樣時,允收到不良貨批之風險稱為?					
	(A)生產者風險					
	(B)消費者風險					
	(C) α 風險					
	(D)"對的判錯"之風險					
A	16. 若在製程管制狀態下,自然公差小於規格公差,則所生產產品之合格率應?					
	(A)大部分均合格					
	(B)可能會產生高比率之不合格品					
	(C)大部分都不合格					
	(D)無法判斷					
В	17. 利用 MIL-STD-1916 抽樣系統進行抽樣檢驗時,若檢驗該項品質特性不符合要求					
	時,將會導致產品失效或降低其使用性,則該項品質特性應歸類為:					
	(A)關鍵 (critical)品質特性					
	(B)主要(major)品質特性					
	(C)次要(minor)品質特性					
	(D) 生產 (production) 品質特性					
С	18. 執行 MIL-STD-1916 記數抽樣計畫時,下列何種情況應判定為"主要不合格件					
	(Major nonconforming unit) "?					
	(A)符合所有關鍵與主要品質特性,但不符合次要品質特性要求之不合格件,					
	且其不符合事項中包含五項以上之次要品質特性					
	(B)符合所有關鍵與主要品質特性,但不符合次要品質特性要求之不合格件,					
	且其不符合事項中包含三項以上之次要品質特性					
	(C)符合所有關鍵品質特性,但不符合主要品質特性要求之不合格件,且其不					
	符合事項中包含一項以上之主要品質特性					
	(D)符合所有關鍵品質特性,但不符合主要品質特性要求之不合格件,且其不					
	符合事項中包含三項以上之主要品質特性					
С	19. MIL-STD-105E 抽樣系統係以?					
	(A) 平均出廠品質 (Average Outgoing Quality, AOQ) 為基礎					
	(B) 平均總檢驗數 (Average Total Inspection, ATI) 為基礎					
	(C)可接受的品質水準(Acceptable Quality Level, AQL)為基礎					
	(D)平均出廠品質界限(Average Outgoing Quality Level, AOQL)為基礎					

科目:統計製程品管

考試日期: 113年8月24日

第 5 頁,共 9 頁

答案	題目 + 選項
С	20. 以 Ca 指標衡量製程能力時,下列敘述何者正確?
	(A) Ca 值愈高表示製程能力愈好
	(B) Ca 值愈高表示製程平均值愈接近規格中心
	(C) Ca 值愈低表示此時製程穩定下的產出不良率愈低
	(D)一般可接受的最大 Ca 值通常是 0.5
C	21. 有關「MIL-STD-105E」之敘述,下列何者不正確?
	(A)係以 AQL 允收水準為基礎
	(B)抽樣計畫又將缺失分為正常檢驗、加嚴檢驗、減量檢驗,具動態轉換機制
	(C) 係以單次抽樣為主
	(D)一般先使用正常檢驗,若在連續 5 個批量中有 2 個被拒收,則應轉換至嚴
	格檢驗
В	22. 有關「MIL-STD-1916」之敘述,下列何者正確?
	(A)使用 AQL (Acceptance Quality Level)之允收水準來避免顧客收到不合格
	(B)其目標著重在建立不合格件之製程改進
	(C)其決策準則主要分為 100%檢驗階段與抽樣檢驗兩階段
	(D)查檢表上有加嚴、正常及減量等相對應之查檢表數十個,可建立持續改善 之品質系統制度
В	23. 有關「Dodge-Romig 抽樣系統」之敘述,下列何者不正確? (A)屬於選別檢驗抽樣計畫
	(B)以平均出廠品質界限為基礎之 Dodge-Romig 抽樣計畫,能確保平均出廠品
	質皆超過平均出廠品質界限
	(C)以拒收品質水準為基礎之 Dodge-Romig 抽樣計畫,能保證送驗之壞批不良
	率不會超過拒收品質水準
	(D)為計數值抽樣表
A	24. 有關「操作特性曲線 (operating characteristic curve)」之敘述,下列何者不正確?
	(A) 係以送驗批的不合格率作為縱軸, 允收機率作為橫軸, 並將前述送驗批成
	對的不合格率與允收機率連結成線而得
	(B) 允收機率的大小取決於抽樣方法與送驗批的品質,因此任何抽樣計畫皆有
	其特有的操作特性曲線
	(C)理想的操作特性曲線於不良率座標軸僅含合格區及不合格區兩部份

科目:統計製程品管

考試日期: 113年8月24日

第 6 頁,共 9 頁

答案	題目 + 選項
	(D)理想的操作特性曲線,合格區的允收機率為 1,不合格區的允收機率為 0
В	25. 在執行 MIL-STD-1916 連續抽樣檢驗計畫時,發生下列何種情況,可由"加嚴檢
	驗"轉換為"正常檢驗"?
	(A)在檢驗週期內,檢驗總數未超過五倍(na)中,發現有兩件不合格
	(B) 在檢驗週期內,檢驗總數至少超過五倍(na) 樣本中,未發現不合格
	(C)在檢驗週期內至少檢驗 10 倍 (na) 樣本中,未發現不合格品
	(D) 發現不符合件而長期篩選
В	26. 實施單次抽樣計畫時,當送驗批量中隨機抽取相同比例的樣本數,即 n/N 為固定
	比率值,且允收數(c)為固定值,有關操作特性曲線(OC曲線)之變化,下列
	何者正確?
	(A)由於 n/N 為固定比率值,抽樣樣本數 (n)並不會影響 OC 曲線的斜度或陡
	度
	(B) 同一允收機率情況下,抽樣樣本數(n)愈小,被允收的機率(Pa)愈大
	(C) 同一允收機率情況下,抽樣樣本數(n)愈大,被允收的機率(Pa)愈大
	(D)允收機率(Pa)與 n/N 之關係,屬線性關係,因此抽樣檢驗可採用百分比
	的觀念訂定樣本數 (n)
A	27. 收集 25 組數據·繪製 P 管制圖·經計算得 P =5%·每組樣本數相等·n=100·
	A2=0·則 UCLP 為:
	(A) 11.54%
	(B) 17.26%
	(C) 8.32%
	(D) 5.61%
С	28. 美國 FDA 於 2019 年啟動數位系統管理食品安全·根據食品類型和原產國過去發
	生的問題等條件,對進口食品進行風險分級,當年使用的數位科技不包括?
	(A)數據分析
	(B)人工智慧(AI)
	(C)區塊鏈

科目:統計製程品管

考試日期: 113年8月24日

第 7 頁,共 9 頁

答案	題目 + 選項				
	(D)機械學習				
A	29. 有關品管圈活動展的主要步驟,下列何者正確?				
	(A)把握問題→決定主題→設定目標→問題分析→效果確認				
	(B)決定主題→問題分析→把握問題→設定目標→效果確認				
	(C)問題分析→把握問題→決定主題→設定目標→效果確認				
	(D)決定主題→把握問題→設定目標→問題分析→效果確認				
В	30. 貴公司為生產巧克力產品的工廠,工廠面積不大的因素,只有一條生產線,因業				
	務需求,今天必須生產三種巧克力,第一種是花生牛奶巧克力、第二種是黑巧克				
	力、第三種是牛奶巧克力,若您為廠長,試問您如何安排生產線生產這三種產品				
	的順序?				
	(A)牛奶巧克力、花生牛奶巧克力、黑巧克力				
	(B)黑巧克力、牛奶巧克力、花生牛奶巧克力				
	(C) 花生牛奶巧克力、牛奶巧克力、黑巧克力				
	(D)以上皆可以				

科目:統計製程品管

考試日期: 113年8月24日 第 8 頁 共 9 頁

簡答題 10 題 (佔 40%)

題目

一、封口機密封測試,每 250 包為一單位,今抽出 25 單位,檢驗結果如下,根據這些 資料繪製不良數管制圖。

組別	樣本數	不良數	組別	樣本數	不良數	組別	樣本數	不良數
1	250	2	10	250	1	19	250	3
2	250	1	11	250	3	20	250	4
3	250	2	12	250	1	21	250	1
4	250	2	13	250	2	22	250	2
5	250	4	14	250	1	23	250	1
6	250	4	15	250	2	24	250	2
7	250	3	16	250	4	25	250	2
8	250	2	17	250	2	合計	6250 50	56
9	250	4	18	250	1			50

- 二、產量不大的製程,其各組樣本大小往往無法相等,於繪製不良率管制圖時,其管制 界限應如何計算?其中心線應如何計算?
- 三、廠家生產 $A \times B$ 兩種麵包,經抽樣檢驗得其平均重量分別為 XA=149 克,XB=187 克;而標準差分別為 $SA=28g \cdot SB=31 g \cdot$ 則其變異係數 $UA \times VB$ 分別為:
- 四、不良率管制圖的管制界限會隨著樣本大小而變動,此種管制界限在品質管理上如何稱呼?當樣本大小愈大時,管制界限之寬度會如何變化?
- 五、請說明食品製造業或服務業進行製程能力分析之意義。
- 六、若品質特性數據為計量值且其分佈呈常態分佈或近似常態分佈,請簡要說明 Cp 指標之定義及意涵。

科目:統計製程品管

考試日期: 113年8月24日 第 9 頁,共 9 頁

題目

七、設有一抽樣計畫:n=89·Ac=2·利用卜瓦松分配數值表可求得下表之數據·請繪 出單次抽樣之 OC 曲線·並請問當送驗批不良率為 2.3%時·其被允收的機率為何? (如圖表)

$R = 0$ $R_c = 2$ $R_c = $						
送驗批不良率(p)	平均不良數(np)	允收機率(P_a)				
0.09	8.0	0.014				
0.07	6.2	0.054				
0.06	5.3	0.102*				
0.05	4.4	0.185				
0.03	2.7	0.494*				
0.02	1.8	0.731				
0.01	0.0	0.027				

表 $n = 89 \cdot A_c = 2$ 的單次抽樣允收機率

註:*表內插值

八、抽樣檢驗之 MIL-STD-414 表,所採用的 AQL 值的範圍為何?其對變異的表示法有哪三種方式?

九、解釋名詞:精密度與準確度 (Precision and Accuracy)

十、已知某飲料公司·其飲料之充填量規格為 $200\pm10~\text{mL}$ 。若從製程中經抽取 30~個樣本後,測得實際充填量 (平均數 \pm 三個標準差)為 $205\pm16~\text{mL}$,請計算該製程之 Ca、 Cp、Cpk,並評估該製程能力是否良好。